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1. INTRODUCTION AND RESULTS

Let D be a bounded simply connected domain in the complex plane whose
boundary is a rectifiable Jordan curve C. Let D* denote the complement
of the closure of D with respect to the extended plane and let @ be the
conformal map of |z | > 1 onto D= such that @(c0) = owand @'(0) > 0.
Extend @ to the topological map (also denoted by @) from | z | > 1 onto the
closure of D* and let ¢(z) = P(eit). By the rectifiability of C, it is known
(and follows easily from the F. and M. Riesz theorem) that ¢ is an absolutely
continuous function. For convenience, we assume that D contains the origin.

DisTRIBUTION OF ELECTRONS

Let z, , = (0 + 27k[n), k = 1,...,n; n = 1, 2,..., where 0is an arbitrarly
chosen real number, and let

Pa@) = n (1 = z/z).

The points z,, ., k = 1,...,n and n = 1, 2,... are called the Fejér points of C
and the polynomials p,, are the corresponding Fejér polynomials normalized
to be one at the origin. Since ¢ is absolutely continuous, the Fejér poly-
nomials p,, converge uniformly on each compact subset of D to the constant 1
[4, 6]. Or equivalently, the Fejér points {z, ;} of C are asymptotically neutrally
distributed relative to D [3], i.e.,

3

1/(Z - Zn,k) —0
1

k

]

uniformly on every compact subset of D as n — co.
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Indeed, if w, , € C, k = 1,...,nand n = 1, 2,..., then the (negative complex
conjugate of the) sum

5@ = 3 Yz — wan)

represents the electrostatic field at the point z due to the electrons of unit
charges at the points w, ;, k¥ = 1,..., n. Hence, {w, ;} are asymptotically
neutrally distributed relative to D if and only if the “fields” s, are asympto-
tically zero on each closed subset of D.

DerINITION. Letw, ,e C, k = 1,..,nandn =1, 2,... . We say that {w,, ;}
are asymptotically neutrally and boundedly distributed relative to D (ANBD)
if {w,;} are asymptotically neutrally distributed relative to D and there exists
an M < o such that

n

[TA—ziw. )| <M

k=1

max
zeC

for all n. If such sequences {w,_;} exist on C, we say that the curve C is of class
ANBD.

We observe that there exist asymptotically neutrally distributed sequences
which are not ANBD. For example, let {z, ;} be Fejér points of C, m = n?
and Wy, = "' = Wpn = Zpiseeos Wnmenay = " = Wyn = Znn. I C I8
so smooth that ¢ is twice continuously differentiable, then it can be shown
{5] that uniformly on each compact subset of D,

i 1/(z — zp) = o(1/n);

and hence, {w,, ;} are also asymptotically neutrally distributed relative to D,
although n electrons of unit charges are concentrated ateach z,, ;, , k = 1,..., n.
However, if the p, denote the Fejér polynomials as defined previously, then

dn2) = f{ (1 = 2/wmz) = Pu"(@).

Since p, — 1 uniformly on compact subsets of D and all the zeros of p, lie
on C, we can see that lim inf max. | p,, | > 1, so that max¢ | g, | — 0.

Hence, we have the following problem: What curves C are of class ANBD,
and if C is of class ANBD, what sequences of points on C are ANBD ?

DEerINITION. Let L be the length of the rectifiable Jordan curve C and let



POLYNOMIAL APPROXIMATION AND DISTRIRUTION OF ELECTRONS 357

z = h(s), 0 << s < L, where s denotes arc length, be a parametric representa-
tion of C. Let 0 << o < 1. Then the curve C is said to be of class H(1, «), if C
has a continuously turning tangent line, and 4’ satisfies a Holder condition
of order a:

|K(s) —H(@O) < Kl|s—t]

or all s, t € [0, L], where K < c0.
We will establish the following theorem.

MAIN THEOREM. Let the Jordan curve C be of class H(l, x) where
0 <a<l. For each n =1,2,.,lett, =t,,, k = 1,..,n + 1, be points
such that 0 <<t, < <t, <2m tyy=2m -+t and

i — 1)) min (G, — 1) <
Iléljaén (i1 t’)/l Igr}léln (41 ) < A4,

where A < 0. Let o5 = a,; = n(t;, — )2mw and 0, = 0, ; = (t; ., + £))/2,
forj =1,..., n, and define

4nf2) = H (1 — 2/$O))".

Then there is a positive constant B, independent of the choice of the {t, ;},
such that

max | ¢,(z)] < B
Jor all n.

As a trivial consequence of this theorem, we have the following

CoRrOLLARY. If C is of class H(1, o), 0 << oo << 1, then the Fejér points of
C are ANBD.

Hence, all Jordan curves of class H(l, «), 0 < a < 1, are of class ANBD.

2. PROOF OF THE MAIN THEOREM
We need the following four lemmas.
LemMA 1. For each z € D, we have
[ o8t — z1gundr = o n)

where the branch of the logarithm is taken so that log1 = 0.
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The proof of this is clear if we note that @(o0) = oo0. The following result
is due to Kellogg and can be found in [7].

LemMa 2. Let C be of class H(1, «), 0 < o < 1. Then the derivative @' is
zero free for | z| = 1 and D' satisfies a Holder condition of order o on the
unit circle:

[D'(e) — D(e) < K*|s — 1%
where K* << co and s, t € [0, 27].

As a consequence of this, we have the following

LemMA 3. Let C be of class H(1, o), 0 < o << 1. Then there exist positive
constants C, , Cy , C, such that for all s, t € [0, 2],

| d(s) — () = Cy|s —t|, where |s—t| <=, (2
[¢() — (D < Cyls—1t], and 3
| $(s) — d(t) — (s — )] < Cy| s — ¢t 1= €Y

Proof. By the continuity of ¢’ and Kellogg’s result, we have

mm icﬁ(t)l >0,

o<
and hence, (2) follows. Now,
| $'(s) — $'()] = | e*P'(e¥) — e"'P'(e¥)]
< l eis@’(eis) . eis@’(eit)l + | eisqj’(eit) _ eit@’(eit)|
SK*|s—t]+ | D) | s — 1]
< Gls —t%
and suppose that s << 7, then
80— ) = $GNt — ) = [ F) — $ ) r

Hence, (4) follows and (3) is a trivial consequence of (4).

LeMMA 4. Let C be such that ¢ satisfies (2) and (3). Then there is a positive
constant R such that for each 8, 0 < B < mw/4 and all z in the closure of D,
we have

log | 1 — z/$(0)] — 715 j: log | 1 — z/(t)l dt < R. ®)
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Proof. By the maximum principle it is sufficient to consider z = $(6),
and by symmetry, welet0 < 8 <{ 7. When 0 < 8 < wfdand #/2 < 0 < =,
(5) is trivial. Hence, we assume that 0 < 8 < /2. Now,

log| 1 — HOV$OI — 5 | Jog| 1 — 400 dt

1 8 — (0 1 B8
= 55 [ o8 | SR =5ar | @+ 5 | tog | 555

The integral
1 8
25 |, log| /4 0)f &

is clearly bounded above. Also, since 0 <B << w/4 and 0 < B <
[ —1t] <o for —B <t < B, and by (2) and (3), we have

$(0) — ¢(9)‘
) — $0) | ~

t—el

Hence, we obtain

g : g
log‘l—% ~71l§f_slog{ igt))‘dt

< Ry +log2 4 o [ log | 6/t — 6)/ dr.
C, 28U,

By a proof similar to that of Lemma 4.1 in [2], we can show that

B8
—21/3— | 1081810 — 01 ar < 1

For all 0 < B8 < #/4 and 0 < 8 < #. The proof of the lemma is completed
by letting R = R, + log(C,/C)) + 1.

With the above lemmas, we can prove the main theorem. Let 4, =
(tia — 1)/2, j = 1,..., n. By Lemma 1, we obtain, using the principal values
of the logarithms,

n

log g.(2) = Z a; log (1 — ¢—(Zl9;f) — —2—”; f:ﬂ log (1 — ~$%—)-) dt

i=1

Y 26+ 1) — 2/(B)
= L7 f-,"’g}l 1= 2/3(0) Ha©
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By the maximum principle, we can assume that z = ¢(6), and without loss
of generality, we restrict ourselves to the case where ¢, — 27 << 0 <¢,.
Now, let

S, ={j:j=>2and0<b —0<m
and

={jij<n—1land 7 < 6§, — 6 < 27

Then for j € Sy, (2) of Lemma 3 implies that

i1
[0) — @) =C160; — 0] = Ci(t; — 1) = G Yty — 1)
k=l
Note that
min (tk+1 —~ ) < 27@/n < max (terr — 1),

I<k< 1<k

so that by the hypothesis, we get

max (¢ — 1
1</? ”( k41 x) < 2mAfn

and

. g}‘m (tyn — W) == 2mjnA.

Hence, for je 8;, we have
| $(8;) — (B = 27Cy(j — 1)/nA.

Similarly, we can prove that for je S, ,

| $(6;) — $(@)] = | Q27 + 6) — $(6))]
= GQ2mr+0—6) = Clt, — t;11)

n—1

=G z (tes1 — 1)

E=j+1

> 2aCy(n — j — 1)/nA.

On the other hand, for —4; <t < 4;, (3) of lemma 3 implies that
| $(0; + 1) — $(0)| < 27C,A4/2n. 7

Let p be the positive integer p = [Cyd,A%/C,d,] -+ 2, where d, denotes the
diameter of D and d, denotes the distance from 0 to C. Combining the above
estimates, we see that for p <j<n —p,

[ 4(6) — ¢(0) | = 27Ci(p — D)[nd > (dy/dy) - 27CyA]n.
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But | ¢(0)/$(6; + 1)| < dy/d, . Hence, for —4; <t < 4;,p <j<n—p,we
obtain, by using (7),

b0 _ 4O | _ &y - #4040
50,0 d6y | S 0y
nl¢(93)~ bOL| | _ 900
ST 2mGoA 30,
L, 40
31— ey | ®

‘We now split the sum in (6) into two parts:
log ga(e®) = 2" + 2,

where 2’ denotes the sumover 1 <j<{p—1landn—p+1<j<nand
2" is the sum over p < j < n — p. Assuming that »n is so large that 4; < =/4
for all j, we can use Lemma 4 to get

A
Re ' = 2 2" 4, }log | 1 — $(0)/$(0)] — 5}7_ f_d, 108' 1= r(;i(i) D) ’ d’%

- %2' A;R < 2pRA.

To study 2", we set

_ 0)/$0; + 1) — $(6)/$(8,)
1 — $(0)/4(6)) ’

so that by 8) for p <j<{m—pand —4; <t < 4;, | x| <1/2. For the
same range of ¢ and j,

—log(l — x) = x + {2 + (3 + 3 = x + (D + 3 + ),

so that

—log [l —x|<Rex+3IxP1—1x)<Rex+|xl-
Hence, we have

Tl-—ﬁ

Re X" < f Rexdt—l———
j=p *—4;

—D

Zfdj\xlgdt

j=p “—4;

:Q1+Q2:
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say, where

_nn " $O)/$(6; + 1) — $(B)/$(6)
Q=5 2l Rg 1 — 30V 465 fa

e 0)— O D) HO)
=52, R3 Freppar o L

n Y $0) — 6+ 1) [ $B) $(8)
a2 ) Re§ ¢<0,-)—¢(0)t (¢(0f+t)“¢‘(8j))§"’

=D =

n—p ,4;

$0) 0
o' =53], R°3¢(0,)~:b(o) 46y

j=p “ =4

S A’ $(6;) — $(0; + 1) + ()t $(6)
tor 2 [, R P e 40)

j=p *—4;
The first sum is clearly zero since ¢ is an odd function. By (4) of Lemma 3
we obtain

{ ar

H

_ St Gl | 40)
<5 LI, 56— g | 4wy |

Let S, ={jip<j<n—pand 0 <, — 0 < 7} and
={jip<j<n—pand7 <6, — 0 <2n.

Then we have

, . n Cgd, 4 e
ol < T L, rem—san @
n Cydy tite
T jzf 9@ — 01 "

But S’ CS; and Sy’ C S, , so that we have

n Cyd, 1 A n (An)“"‘
T dy 2+4+a Cy 27\ n

]

sesyJ €8y’
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The right side tends to zero as fast as log n/n*. Also, by similar reasonings,
we have

n " Y Cy2t? A
LS 5 —_— dt
Ql 2 7§p ‘[—4 ] 95(99) - ¢(0)| dz

G2 n "i” a3

Cd? 32w S| () — O
Hence, again by similar reasonings as above, the upper bound of Qj is of
order O(log n/n). Therefore, the upper bounds for Q; = Q,” + Q7 can be
made as small as we please by taking » sufficiently large. Also, by applying
Lemma 3 again, we have

0, — % Z J-A ¢(9)/¢(0 + 1) — $(6)/$(6) |

dt

&, — $0)/$(6)
n_d® <P Y] (0 + 1) — $(O) I
ST X f_z,j s8—90 | ¥
n d1C2An Arr 1
27 ( d2C127T 3JZS 1)2 i ,Zs (n—j—1¢

< (A%/2)(md; Cy/6d,C,)3.
Thus, we may take

log B = 2RA((d,C,/d,Cy) A% + 2) + A8/2(nd,C,/6d,C,)? + 1
to complete the proof of the theorem.

Remark. Professor Kovari pointed out to the author that he and
Pommerenke proved independently that if D is convex and z, ,, k =1,..., n,
are Fejer points on C, then

n

max [[11 = z/z,, | <4
< k=1

€
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