Polynomial Approximation and Distribution of Electrons

Charles K. Chui
Department of Mathematics, Texas A \& M University, College Station, Texas 77843

Communicated by G. G. Lorentz
Received February 16, 1971

1. Introduction and Results

Let D be a bounded simply connected domain in the complex plane whose boundary is a rectifiable Jordan curve C. Let D^{∞} denote the complement of the closure of D with respect to the extended plane and let Φ be the conformal map of $|z|>1$ onto D^{∞} such that $\Phi(\infty)=\infty$ and $\Phi^{\prime}(\infty)>0$. Extend Φ to the topological map (also denoted by Φ) from $|z| \geqslant 1$ onto the closure of D^{∞} and let $\phi(t)=\Phi\left(e^{i t}\right)$. By the rectifiability of C, it is known (and follows easily from the F. and M. Riesz theorem) that ϕ is an absolutely continuous function. For convenience, we assume that D contains the origin.

Distribution of Electrons

Let $z_{n, k}=\phi(\theta+2 \pi k / n), k=1, \ldots, n ; n=1,2, \ldots$, where θ is an arbitrarly chosen real number, and let

$$
p_{n}(z)=\prod_{k=1}^{n}\left(1-z / z_{n, k}\right)
$$

The points $z_{n, k}, k=1, \ldots, n$ and $n=1,2, \ldots$ are called the Fejèr points of C and the polynomials p_{n} are the corresponding Fejèr polynomials normalized to be one at the origin. Since ϕ is absolutely continuous, the Fejèr polynomials p_{n} converge uniformly on each compact subset of D to the constant 1 $[4,6]$. Or equivalently, the Fejèr points $\left\{z_{n, k}\right\}$ of C are asymptotically neutrally distributed relative to D [3], i.e.,

$$
\sum_{k=1}^{n} 1 /\left(z-z_{n, k}\right) \rightarrow 0
$$

uniformly on every compact subset of D as $n \rightarrow \infty$.

Indeed, if $w_{n, k} \in C, k=1, \ldots, n$ and $n=1,2, \ldots$, then the (negative complex conjugate of the) sum

$$
s_{n}(z)=\sum_{k=1}^{n} 1 /\left(z-w_{n, k}\right)
$$

represents the electrostatic field at the point z due to the electrons of unit charges at the points $w_{n, k}, k=1, \ldots, n$. Hence, $\left\{w_{n, k}\right\}$ are asymptotically neutrally distributed relative to D if and only if the "fields" s_{n} are asymptotically zero on each closed subset of D.

Definition. Let $w_{n, k} \in C, k=1, \ldots, n$ and $n=1,2, \ldots$. We say that $\left\{w_{n, k}\right\}$ are asymptotically neutrally and boundedly distributed relative to D (ANBD) if $\left\{w_{n, k}\right\}$ are asymptotically neutrally distributed relative to D and there exists an $M<\infty$ such that

$$
\max _{z \in C}\left|\prod_{k=1}^{n}\left(1-z / w_{n, k}\right)\right|<M
$$

for all n. If such sequences $\left\{w_{n, k}\right\}$ exist on C, we say that the curve C is of class ANBD.

We observe that there exist asymptotically neutrally distributed sequences which are not ANBD. For example, let $\left\{z_{n, k}\right\}$ be Fejèr points of $C, m=n^{2}$ and $w_{m, 1}=\cdots=w_{m, n}=z_{n, 1}, \ldots ., w_{m, m-n+1}=\cdots=w_{m, n}=z_{n, n}$. If C is so smooth that ϕ is twice continuously differentiable, then it can be shown [5] that uniformly on each compact subset of D,

$$
\sum_{k=1}^{n} 1 /\left(z-z_{n . k}\right)=o(1 / n)
$$

and hence, $\left\{w_{m, k}\right\}$ are also asymptotically neutrally distributed relative to D, although n electrons of unit charges are concentrated at each $z_{n, k}, k=1, \ldots, n$. However, if the p_{n} denote the Fejèr polynomials as defined previously, then

$$
q_{m}(z)=\prod_{k=1}^{m}\left(1-z / w_{m, k}\right)=p_{n}^{n}(z)
$$

Since $p_{n} \rightarrow 1$ uniformly on compact subsets of D and all the zeros of p_{n} lie on C, we can see that $\lim \inf \max _{C}\left|p_{n}\right|>1$, so that $\max _{C}\left|q_{m}\right| \rightarrow \infty$.

Hence, we have the following problem: What curves C are of class ANBD, and if C is of class ANBD, what sequences of points on C are ANBD?

Definition. Let L be the length of the rectifiable Jordan curve C and let
$z=h(s), 0 \leqslant s \leqslant L$, where s denotes arc length, be a parametric representation of C. Let $0<\alpha<1$. Then the curve C is said to be of class $H(1, \alpha)$, if C has a continuously turning tangent line, and h^{\prime} satisfies a Hölder condition of order α :

$$
\left|h^{\prime}(s)-h^{\prime}(t)\right| \leqslant K|s-t|^{\alpha}
$$

or all $s, t \in[0, L]$, where $K<\infty$.
We will establish the following theorem.
Main Theorem. Let the Jordan curve C be of class $H(1, \alpha)$ where $0<\alpha<1$. For each $n=1,2, \ldots$, let $t_{k}=t_{n, k}, k=1, \ldots, n+1$, be points such that $0 \leqslant t_{1}<\cdots<t_{n}<2 \pi, t_{n+1}=2 \pi+t_{1}$ and

$$
\max _{1 \leqslant j \leqslant n}\left(t_{j+1}-t_{j}\right) / \min _{1 \leqslant j \leqslant n}\left(t_{j+1}-t_{j}\right) \leqslant A,
$$

where $A<\infty$. Let $\alpha_{j}=\alpha_{n, j}=n\left(t_{j+1}-t_{j}\right) / 2 \pi$ and $\theta_{j}=\theta_{n, j}=\left(t_{j+1}+t_{j}\right) / 2$, for $j=1, \ldots, n$, and define

$$
q_{n}(z)=\prod_{j=1}^{n}\left(1-z / \phi\left(\theta_{j}\right)\right)^{\alpha_{j}}
$$

Then there is a positive constant B, independent of the choice of the $\left\{t_{n, j}\right\}$, such that

$$
\max _{z \in C}\left|q_{n}(z)\right| \leqslant B
$$

for all n.
As a trivial consequence of this theorem, we have the following
Corollary. If C is of class $H(1, \alpha), 0<\alpha<1$, then the Fejèr points of C are ANBD.

Hence, all Jordan curves of class $H(1, \alpha), 0<\alpha<1$, are of class ANBD.

2. Proof of the Main Theorem

We need the following four lemmas.
Lemma 1. For each $z \in D$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi} \log (1-z / \phi(t)) d t=0 \tag{1}
\end{equation*}
$$

where the branch of the logarithm is taken so that $\log 1=0$.

The proof of this is clear if we note that $\Phi(\infty)=\infty$. The following result is due to Kellogg and can be found in [7].

Lemma 2. Let C be of class $H(1, \alpha), 0<\alpha<1$. Then the derivative Φ^{\prime} is zero free for $|z| \geqslant 1$ and Φ^{\prime} satisfies a Hölder condition of order α on the unit circle:

$$
\Phi^{\prime}\left(e^{i s}\right)-\Phi^{\prime}\left(e^{i t}\right)\left|\leqslant K^{*}\right| s-\left.t\right|^{\alpha}
$$

where $K^{*}<\infty$ and $s, t \in[0,2 \pi]$.
As a consequence of this, we have the following
Lemma 3. Let C be of class $H(1, \alpha), 0<\alpha<1$. Then there exist positive constants C_{1}, C_{2}, C_{3} such that for all $s, t \in[0,2 \pi]$,

$$
\begin{align*}
& |\phi(s)-\phi(t)| \geqslant C_{1}|s-t|, \quad \text { where } \quad|s-t| \leqslant \pi, \tag{2}\\
& |\phi(s)-\phi(t)| \leqslant C_{2}|s-t|, \quad \text { and } \tag{3}\\
& \left|\phi(s)-\phi(t)-\phi^{\prime}(t)(s-t)\right| \leqslant C_{3}|s-t|^{1+\alpha} . \tag{4}
\end{align*}
$$

Proof. By the continuity of ϕ^{\prime} and Kellogg's result, we have

$$
\min _{0 \leqslant t \leqslant 2 \pi}\left|\phi^{\prime}(t)\right|>0,
$$

and hence, (2) follows. Now,

$$
\begin{aligned}
\left|\phi^{\prime}(s)-\phi^{\prime}(t)\right| & =\left|e^{i s} \Phi^{\prime}\left(e^{i s}\right)-e^{i t} \Phi^{\prime}\left(e^{i t}\right)\right| \\
& \leqslant\left|e^{i s} \Phi^{\prime}\left(e^{i s}\right)-e^{i s} \Phi^{\prime}\left(e^{i t}\right)\right|+\left|e^{i s} \Phi^{\prime}\left(e^{i t}\right)-e^{i t} \Phi^{\prime}\left(e^{i t}\right)\right| \\
& \leqslant K^{*}|s-t|^{\alpha}+\left|\Phi^{\prime}\left(e^{i t}\right)\right||s-t| \\
& \leqslant C_{3}|s-t|^{\alpha} ;
\end{aligned}
$$

and suppose that $s<t$, then

$$
\phi(t)-\phi(s)-\phi^{\prime}(s)(t-s)=\int_{s}^{t}\left(\phi^{\prime}(\tau)-\phi^{\prime}(s)\right) d \tau
$$

Hence, (4) follows and (3) is a trivial consequence of (4).
Lemma 4. Let C be such that ϕ satisfies (2) and (3). Then there is a positive constant R such that for each $\beta, 0<\beta \leqslant \pi / 4$ and all z in the closure of D, we have

$$
\begin{equation*}
\log |1-z / \phi(0)|-\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log |1-z / \phi(t)| d t \leqslant R \tag{5}
\end{equation*}
$$

Proof. By the maximum principle it is sufficient to consider $z=\phi(\theta)$, and by symmetry, we let $0<\theta \leqslant \pi$. When $0<\beta \leqslant \pi / 4$ and $\pi / 2 \leqslant \theta \leqslant \pi$, (5) is trivial. Hence, we assume that $0<\theta \leqslant \pi / 2$. Now,

$$
\begin{aligned}
\log \mid & \left.1-\phi(\theta) / \phi(0)\left|-\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log \right| 1-\phi(\theta) / \phi(t) \right\rvert\, d t \\
& =\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log \left|\frac{\phi(0)-\phi(\theta)}{\phi(t)-\phi(\theta)}\right| d t+\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log \left|\frac{\phi(t)}{\phi(0)}\right| d t .
\end{aligned}
$$

The integral

$$
\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log |\phi(t) / \phi(0)| d t
$$

is clearly bounded above. Also, since $0<\beta \leqslant \pi / 4$ and $0<\beta \leqslant \pi / 2$, $|\theta-t|<\pi$ for $-\beta \leqslant t \leqslant \beta$, and by (2) and (3), we have

$$
\left|\frac{\phi(0)-\phi(\theta)}{\phi(t)-\phi(\theta)}\right| \leqslant \frac{C_{2}}{C_{1}}\left|\frac{\theta}{t-\theta}\right| .
$$

Hence, we obtain

$$
\begin{aligned}
\log \mid & \left.1-\frac{\phi(\theta)}{\phi(0)}\left|-\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log \right| 1-\frac{\phi(\theta)}{\phi(t)} \right\rvert\, d t \\
& \leqslant R_{1}+\log \frac{C_{2}}{C_{1}}+\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log |\theta /(t-\theta)| d t .
\end{aligned}
$$

By a proof similar to that of Lemma 4.1 in [2], we can show that

$$
\frac{1}{2 \beta} \int_{-\beta}^{\beta} \log |\theta /(t-\theta)| d t \leqslant 1
$$

For all $0<\beta \leqslant \pi / 4$ and $0<\theta \leqslant \pi$. The proof of the lemma is completed by letting $R=R_{1}+\log \left(C_{2} / C_{1}\right)+1$.

With the above lemmas, we can prove the main theorem. Let $\Delta_{j}=$ $\left(t_{j+1}-t_{j}\right) / 2, j=1, \ldots, n$. By Lemma 1, we obtain, using the principal values of the logarithms,

$$
\begin{align*}
\log q_{n}(z) & =\sum_{j=1}^{n} \alpha_{j} \log \left(1-\frac{z}{\phi\left(\theta_{j}\right)}\right)-\frac{n}{2 \pi} \int_{0}^{2 \pi} \log \left(1-\frac{z}{\phi(t)}\right) d t \\
& =-\sum_{j=1}^{n} \frac{n}{2 \pi} \int_{-\Delta_{j}}^{\Delta_{j}} \log \left\{1-\frac{z / \phi\left(\theta_{j}+t\right)-z / \phi\left(\theta_{j}\right)}{1-z / \phi\left(\theta_{j}\right)}\right\} d t \tag{6}
\end{align*}
$$

By the maximum principle, we can assume that $z=\phi(\theta)$, and without loss of generality, we restrict ourselves to the case where $t_{n}-2 \pi \leqslant \theta \leqslant t_{1}$. Now, let

$$
S_{1}=\left\{j: j \geqslant 2 \text { and } 0 \leqslant \theta_{j}-\theta \leqslant \pi\right\}
$$

and

$$
S_{2}=\left\{j: j \leqslant n-1 \text { and } \pi \leqslant \theta_{j}-\theta \leqslant 2 \pi\right\} .
$$

Then for $j \in S_{1}$, (2) of Lemma 3 implies that

$$
\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right| \geqslant C_{1}\left|\theta_{j}-\theta\right| \geqslant C_{1}\left(t_{j}-t_{1}\right)=C_{1} \sum_{k=1}^{j-1}\left(t_{k+1}-t_{k}\right)
$$

Note that

$$
\min _{1 \leqslant k \leqslant n}\left(t_{k+1}-t_{k}\right) \leqslant 2 \pi / n \leqslant \max _{1 \leqslant k \leqslant n}\left(t_{k+1}-t_{k}\right)
$$

so that by the hypothesis, we get

$$
\max _{1 \leqslant k \leqslant n}\left(t_{k+1}-t_{k}\right) \leqslant 2 \pi A / n
$$

and

$$
\min _{1 \leqslant k \leqslant n}\left(t_{k+1}-t_{k}\right) \geqslant 2 \pi / n A .
$$

Hence, for $j \in S_{1}$, we have

$$
\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right| \geqslant 2 \pi C_{1}(j-1) / n A
$$

Similarly, we can prove that for $j \in S_{2}$,

$$
\begin{aligned}
\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right| & \geqslant\left|\phi(2 \pi+\theta)-\phi\left(\theta_{j}\right)\right| \\
& \geqslant C_{\mathbf{1}}\left(2 \pi+\theta-\theta_{j}\right) \geqslant C_{\mathbf{1}}\left(t_{n}-t_{j+1}\right) \\
& =C_{\mathbf{1}} \sum_{k=j+1}^{n-1}\left(t_{k+1}-t_{k}\right) \\
& \geqslant 2 \pi C_{\mathbf{1}}(n-j-1) / n A .
\end{aligned}
$$

On the other hand, for $-\Delta_{j} \leqslant t \leqslant \Delta_{j}$, (3) of lemma 3 implies that

$$
\begin{equation*}
\left|\phi\left(\theta_{j}+t\right)-\phi\left(\theta_{j}\right)\right| \leqslant 2 \pi C_{2} A / 2 n . \tag{7}
\end{equation*}
$$

Let p be the positive integer $p=\left[C_{2} d_{1} A^{2} / C_{1} d_{2}\right]+2$, where d_{1} denotes the diameter of D and d_{2} denotes the distance from 0 to C. Combining the above estimates, we see that for $p \leqslant j \leqslant n-p$,

$$
\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right| \geqslant 2 \pi C_{1}(p-1) / n A \geqslant\left(d_{1} / d_{2}\right) \cdot 2 \pi C_{2} A / n .
$$

But $\left|\phi(\theta) / \phi\left(\theta_{j}+t\right)\right| \leqslant d_{1} / d_{2}$. Hence, for $-\Delta_{j} \leqslant t \leqslant \Delta_{j}, p \leqslant j \leqslant n-p$, we obtain, by using (7),

$$
\begin{align*}
\left|\frac{\phi(\theta)}{\phi\left(\theta_{j}+t\right)}-\frac{\phi(\theta)}{\phi\left(\theta_{j}\right)}\right| & \leqslant \frac{d_{1}}{d_{2}}\left|1-\frac{\phi\left(\theta_{j}+t\right)}{\phi\left(\theta_{j}\right)}\right| \\
& \leqslant \frac{n\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right|}{2 \pi C_{2} A}\left|1-\frac{\phi\left(\theta_{j}+t\right)}{\phi\left(\theta_{j}\right)}\right| \\
& \leqslant \frac{1}{2}\left|1-\frac{\phi(\theta)}{\phi\left(\theta_{j}\right)}\right| \tag{8}
\end{align*}
$$

We now split the sum in (6) into two parts:

$$
\log q_{n}\left(e^{i \theta}\right)=\Sigma^{\prime}+\Sigma^{\prime \prime}
$$

where Σ^{\prime} denotes the sum over $1 \leqslant j \leqslant p-1$ and $n-p+1 \leqslant j \leqslant n$ and $\Sigma^{\prime \prime}$ is the sum over $p \leqslant j \leqslant n-p$. Assuming that n is so large that $\Delta_{j} \leqslant \pi / 4$ for all j, we can use Lemma 4 to get

$$
\begin{aligned}
\operatorname{Re} \Sigma^{\prime} & =\frac{n}{\pi} \Sigma^{\prime} \Delta_{j}\left\{\log \left|1-\phi(\theta) / \phi\left(\theta_{j}\right)\right|-\frac{1}{2 \Delta_{j}} \int_{-\Delta_{j}}^{\lambda_{j}} \log \left|1-\frac{\phi(\theta)}{\phi\left(\theta_{j}+t\right)}\right| d t\right\} \\
& =\frac{n}{\pi} \Sigma^{\prime} \Delta_{j} R \leqslant 2 p R A .
\end{aligned}
$$

To study $\Sigma^{\prime \prime}$, we set

$$
\chi=\frac{\phi(\theta) / \phi\left(\theta_{j}+t\right)-\phi(\theta) / \phi\left(\theta_{j}\right)}{1-\phi(\theta) / \phi\left(\theta_{j}\right)}
$$

so that by (8) for $p \leqslant j \leqslant n-p$ and $-\Delta_{j} \leqslant t \leqslant \Delta_{j},|\chi| \leqslant 1 / 2$. For the same range of t and j,
$-\log (1-\chi)=\chi+\left\{\left(\chi^{2} / 2\right)+\left(\chi^{3} / 3\right)+\cdots\right\}=\chi+\left(\chi^{2} / 2\right)\{1+(2 \chi / 3)+\cdots\}$,
so that

$$
-\log |1-\chi| \leqslant \operatorname{Re} \chi+\frac{1}{2}|\chi|^{2} /(1-|\chi|) \leqslant \operatorname{Re} \chi+|\chi|^{2}
$$

Hence, we have

$$
\begin{aligned}
\operatorname{Re} \Sigma^{\prime \prime} & \leqslant \frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}} \operatorname{Re} \chi d t+\frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}}|\chi|^{2} d t \\
& =Q_{1}+Q_{2}
\end{aligned}
$$

say, where

$$
\begin{aligned}
Q_{1}= & \frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-A_{j}}^{\Delta_{j}} \operatorname{Re}\left\{\frac{\phi(\theta) / \phi\left(\theta_{j}+t\right)-\phi(\theta) / \phi\left(\theta_{j}\right)}{1-\phi(\theta) / \phi\left(\theta_{j}\right)}\right\} d t \\
= & \frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}} \operatorname{Re}\left\{\frac{\phi\left(\theta_{j}\right)-\phi\left(\theta_{j}+t\right)}{\phi\left(\theta_{j}\right)-\phi(\theta)} \cdot \frac{\phi(\theta)}{\phi\left(\theta_{j}\right)}\right\} d t \\
& +\frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}} \operatorname{Re}\left\{\frac{\phi\left(\theta_{j}\right)-\phi\left(\theta_{j}+t\right)}{\phi\left(\theta_{j}\right)-\phi(\theta)}\left(\frac{\phi(\theta)}{\phi\left(\theta_{j}+t\right)}-\frac{\phi(\theta)}{\phi\left(\delta_{j}\right)}\right)\right\} d t \\
= & Q_{1}{ }^{\prime}+Q_{1}^{\prime \prime}
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{1}^{\prime}= & \frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}} \operatorname{Re}\left\{\frac{-\phi^{\prime}\left(\theta_{j}\right)}{\phi\left(\theta_{j}\right)-\phi(\theta)} \cdot \frac{\phi(\theta)}{\phi\left(\theta_{j}\right)}\right\} t d t \\
& +\frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}} \operatorname{Re}\left\{\frac{\phi\left(\theta_{j}\right)-\phi\left(\theta_{j}+t\right)+\phi^{\prime}\left(\theta_{j}\right) t}{\phi\left(\theta_{j}\right)-\phi(\theta)} \cdot \frac{\phi(\theta)}{\phi\left(\theta_{j}\right)}\right\} d t
\end{aligned}
$$

The first sum is clearly zero since t is an odd function. By (4) of Lemma 3, we obtain

$$
Q_{1}^{\prime} \leqslant \frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}} \frac{C_{3}|t|^{1+\alpha}}{\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right|}\left|\frac{\phi(\theta)}{\phi\left(\theta_{j}\right)}\right| d t
$$

Let $S_{1}{ }^{\prime}=\left\{j: p \leqslant j \leqslant n-p\right.$ and $\left.0 \leqslant \theta_{j}-\theta \leqslant \pi\right\}$ and

$$
S_{2}{ }^{\prime}=\left\{j: p \leqslant j \leqslant n-p \text { and } \pi \leqslant \theta_{j}-\theta \leqslant 2 \pi\right\} .
$$

Then we have

$$
\begin{aligned}
Q_{1}{ }^{\prime} \leqslant & \frac{n}{\pi} \frac{C_{3} d_{1}}{d_{2}} \sum_{j \in S_{1}} \int_{0}^{\Delta_{j}} \frac{t^{1+\alpha}}{\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right|} d t \\
& +\frac{n}{\pi} \frac{C_{3} d_{1}}{d_{2}} \sum_{j \in S_{2}^{\prime}} \int_{0}^{\Delta_{j}} \frac{t^{1+\alpha}}{\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right|} d t
\end{aligned}
$$

But $S_{1}{ }^{\prime} \subset S_{1}$ and $S_{2}{ }^{\prime} \subset S_{2}$, so that we have

$$
Q_{1}^{\prime} \leqslant \frac{n}{\pi} \frac{C_{8} d_{1}}{d_{2}} \frac{1}{2+\alpha} \frac{A}{C_{1}} \frac{n}{2 \pi}\left(\frac{A \pi}{n}\right)^{2+\alpha}\left\{\sum_{j \in S_{1}^{\prime}} \frac{1}{j-1}+\sum_{j \in S_{2}} \frac{1}{n-j-1}\right\}
$$

The right side tends to zero as fast as $\log n / n^{\alpha}$. Also, by similar reasonings, we have

$$
\begin{aligned}
Q_{1}^{\prime \prime} & \leqslant \frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Delta_{j}} \frac{C_{2}{ }^{2} t^{2}}{\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right|} \cdot \frac{d_{1}}{d_{2}} d t \\
& =\frac{C_{2}{ }^{2} d_{1}}{d_{2}^{2}} \frac{2}{3} \frac{n}{2 \pi} \sum_{j=p}^{n-p} \frac{\Delta_{j}^{3}}{\left|\phi\left(\theta_{j}\right)-\phi(\theta)\right|} .
\end{aligned}
$$

Hence, again by similar reasonings as above, the upper bound of $Q_{1}^{\prime \prime}$ is of order $O(\log n / n)$. Therefore, the upper bounds for $Q_{1}=Q_{1}{ }^{\prime}+Q_{1}^{\prime \prime}$ can be made as small as we please by taking n sufficiently large. Also, by applying Lemma 3 again, we have

$$
\begin{aligned}
Q_{2} & =\frac{n}{2 \pi} \sum_{j=p}^{n-p} \int_{-\Delta_{j}}^{\Lambda_{j}}\left|\frac{\phi(\theta) / \phi\left(\theta_{j}+t\right)-\phi(\theta) / \phi\left(\theta_{j}\right)}{1-\phi(\theta) / \phi\left(\theta_{j}\right)}\right|^{2} d t \\
& \leqslant \frac{n}{2 \pi} \frac{d_{1}^{2}}{d_{2}^{2}} \sum_{j=p}^{n-p} \int_{-d_{j}}^{L_{j}}\left|\frac{\phi\left(\theta_{j}+t\right)-\phi\left(\theta_{j}\right)}{\phi\left(\theta_{j}\right)-\phi(\theta)}\right|^{2} d t \\
& \leqslant \frac{n}{2 \pi}\left(\frac{d_{1} C_{2} A n}{d_{2} C_{1} 2 \pi}\right)^{2}\left(\frac{A \pi}{n}\right)^{3}\left\{\sum_{j \in S_{1^{\prime}}} \frac{1}{(j-1)^{2}}+\sum_{j \in S_{2^{\prime}}} \frac{1}{(n-j-1)^{2}}\right\} \\
& <\left(A^{5} / 2\right)\left(\pi d_{1} C_{2} / 6 d_{2} C_{1}\right)^{2} .
\end{aligned}
$$

Thus, we may take

$$
\log B=2 R A\left(\left(d_{1} C_{2} / d_{2} C_{1}\right) A^{2}+2\right)+A^{5} / 2\left(\pi d_{1} C_{2} / 6 d_{2} C_{1}\right)^{2}+1
$$

to complete the proof of the theorem.
Remark. Professor Kövari pointed out to the author that he and Pommerenke proved independently that if D is convex and $z_{n, k}, k=1, \ldots, n$, are Fejèr points on C, then

$$
\max _{z \in C} \prod_{k=1}^{n}|1-z| z_{n, k} \mid \leqslant 4 .
$$

References

1. C. K. ChuI, Bounded approximation by polynomials with restricted zeros, Ph.D. Thesis, University of Wisconsin (1967).
2. C. K. Chui, Bounded approximation by polynomials whose zeros lie on a circle, Trans. Math. Soc. 138 (1969), 171-182.
3. J. Korevaar, Asymptotically neutral distributions of electrons and polynomial approximation, Ann. of Math. 80 (1964), 403-410.
4. G. R. MacLane, Polynomials with zeros on a rectifiable Jordan curve, Duke Math. J. 16 (1949), 461-477.
5. G. Pólya und G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," Vol. 1, p. 195, Springer-Verlag, New York, 1964.
6. M. D. Thompson, On the distribution of asymptotically neutral families, Proceedings Symposium on Pure Mathematics, Vol. II, pp. 475-479, Providence, RI, 1968.
7. M. Tsur, "Potential Theory in Modern Function Theory," Maruzen, Tokyo, Japan, p. 361.
