
JOURNAL OF APPROXIMATION THEORY 7, 355-364 (1973)

Polynomial Approximation and Distribution of Electrons

CHARLES K. CHUI

Department 0/ Mathematics, Texas A & M University, College Station, Texas 77843

Communicated by G. G. Lorentz

Received February 16, 1971

1. INTRODUCTION AND RESULTS

Let D be a bounded simply connected domain in the complex plane whose
boundary is a rectifiable Jordan curve C. Let Doo denote the complement
of the closure of D with respect to the extended plane and let <P be the
conformal map of I Z I> 1 onto Doo such that <P(oo) = ooand <P'(oo) > O.
Extend <P to the topological map (also denoted by <P) from I Z I ;> 1 onto the
closure of Doo and let 1>(t) = ep(eit). By the rectifiability of C, it is known
(and follows easily from the F. and M. Riesz theorem) that 1> is an absolutely
continuous function. For convenience, we assume that D contains the origin.

DISTRIBUTION OF ELECTRONS

Let zn,k = 1>«() + 27Tk/n), k = 1,... , n; n = 1,2,... , where () is an arbitrarly
chosen real number, and let

n

Pn(z) = n(l - Z/Zn,k)'
k=l

The points Zn,k , k = 1,..., nand n = 1,2,.. , are called the Fejer points of C
and the polynomials Pn are the corresponding Fejer polynomials normalized
to be one at the origin. Since 1> is absolutely continuous, the Fejer poly­
nomials Pn converge uniformly on each compact subset of D to the constant I
[4, 6], Or equivalently, the Fejer points {Zn,k} of C are asymptotically neutrally
distributed relative to D [3], i.e.,

n

L l/(z - Zn.k) -- 0
k=l

uniformly on every compact subset of D as n -- 00.
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Indeed, ifwn,k E C, k = 1,..., nand n = 1,2,... , then the (negative complex
conjugate of the) sum

n

sn(z) = I Ij(z - Wn.k)
k~l

represents the electrostatic field at the point z due to the electrons of unit
charges at the points Wn,k, k = 1,... , n, Hence, {Wn,k} are asymptotically
neutrally distributed relative to D if and only if the "fields" Sn are asympto­
tically zero on each closed subset of D.

DEFINITION. Let Wn,k E C, k = 1,..., nand n = 1,2,.... We say that {wn.k}
are asymptotically neutrally and boundedly distributed relative to D (ANBD)
if {Wn,k} are asymptotically neutrally distributed relative to D and there exists
an M < !X) such that

for all n. If such sequences {Wn,k} exist on C, we say that the curve C is of class
ANBD.

We observe that there exist asymptotically neutrally distributed sequences
which are not ANBD. For example, let {Zn,k} be Fejer points of C, m = n2

and Wm.1 = .. , = Wm,n = Zn,l ,.... , Wm,m-n+l = ... = Wm,n = Zn,n' If C is
so smooth that 4> is twice continuously differentiable, then it can be shown
[5] that uniformly on each compact subset of D,

n

I Ij(z - Zn.k) = o(ljn);
k=l

and hence, {Wm,k} are also asymptotically neutrally distributed relative to D,
although n electrons of unit charges are concentrated at each Zn,k , k = 1,... , n.
However, if the Pn denote the Fejer polynomials as defined previously, then

m

qm(z) = IT (1 - Z/Wm.k) = Pn n(z).
k=l

Since Pn --+ 1 uniformly on compact subsets of D and all the zeros of Pn lie
on C, we can see that lim infmaxe IPn I > 1, so that maxe I qm I --+ 00.

Hence, we have the following problem: What curves C are of class ANBD,
and if C is of class ANBD, what sequences ofpoints on Care ANBD?

DEFINITION. Let L be the length of the rectifiable Jordan curve C and let
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z = h(s), 0 :::;;; s :::;;; L, where s denotes arc length, be a parametric representa­
tion of C. Let 0 < ex < 1. Then the curve C is said to be of class H(I, ex), if C
has a continuously turning tangent line, and h' satisfies a Holder condition
of order ex:

Ih'(s) - h'(t)1 :::;;; K [ s - t [IX

or all s, t E [0, L], where K < 00.

We will establish the following theorem.

MAIN THEOREM. Let the Jordan curve C be of class H(I, ex) where
o< ex < 1. For each n = 1,2,... , let tk = tn,k' k = 1,..., n + 1, be points
such that 0 :::;;; t1 < ... < tn < 27T, tn+l = 27T + t1 and

where A < 00. Let exi = exn.i = n(ti+l - ti)/27T and ()i = 0n,i = (ti+l + ti)/2,
for j = 1'00" n, and define

n

qnCz) = IT (1 - Zjf{J(()i))";'
i=1

Then there is a positive constant B, independent of the choice of the {tn.i},
such that

max I qnCz)I :::;;; B
ZEC

for all n.

As a trivial consequence of this theorem, we have the following

COROLLARY. If C is of class H(I, 0:), 0 < ex < 1, then the Fejer points of
CareANBD.

Hence, all Jordan curves of class H(I, 0:),0 < 0: < 1, are of class ANBD.

2. PROOF OF THE MAIN THEOREM

We need the following four lemmas.

LEMMA 1. For each zED, we have

f
2"

10g(1 - zjf{J(t)) dt = 0,
o

where the branch of the logarithm is taken so that log 1 = O.

(1)
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The proof of this is clear if we note that tP( (0) = 00. The following result
is due to Kellogg and can be found in [7].

LEMMA 2. Let C be ofclass H(l, ex), °< ex < 1. Then the derivative (j)' is
zero free for I z I ~ 1 and (j)' satisfies a HOlder condition of order ex on the
unit circle:

where K* < 00 and s, t E [0, 271"].

As a consequence of this, we have the following

LEMMA 3. Let C be of class H(l, ex), °< ex < 1. Then there exist positive
constants C1 , C2 , Ca such that for all s, t E [0, 271"],

Itj>(s) - tj>(t) I ~ C1 1s - t I, where Is - t I ::::;: 71", (2)

Itj>(s) - tj>(t)I ::::;: C2 Is - t I, and (3)

Itj>(s) - tj>(t) - 1>'(t)(s - t)1 ::::;: Ca1s - t Il+~. (4)

Proof By the continuity of tj>' and Kellogg's result, we have

min 11>'(t)1 > 0,
O<t~21T

and hence, (2) follows. Now,

11>'(s) - tj>'(t)I = Ieis(j)'(eiS) - eit(j)'(eit)j

::::;: I eistP'(eis) - eistP'(eit) I + 1 eistP'(eit ) - eittP'(eit) 1

::::;: K* 1s - t I~ + 1(j)'(eit ) [ I s - t I
::::;: Cal S - t I~;

and suppose that s < t, then

tj>(t) - tj>(s) - tj>'(s)(t - s) = r(tj>'(T) - tj>'(s)) dT.
s

Hence, (4) follows and (3) is a trivial consequence of (4).

LEMMA 4. Let C be such that tj> satisfies (2) and (3). Then there is a positive
constant R such that for each fl, °< fl ::::;: 71"/4 and all z in the closure of D,
we have

1 Jillog I 1 - zN(O)I - 2fl -Il log I 1 - zN(t)1 dt ::::;: R. (5)
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Proof By the maximum principle it is sufficient to consider z = cp(O),
and by symmetry, we let 0 < 0 :s;; 77. When 0 < f3 :s;; 77/4 and 77/2 :s;; 0 :s;; 77,
(5) is trivial. Hence, we assume that 0 < 0 :s;; 77/2. Now,

1 B
log I 1 - cp(O)!4>(O)I - 2ff L

B
log I I - cp(O)!4>(t)1 dt

1 fB I cp(O) - cp(O) I 1 fB I cp(t) I
= 2f3 -B log cp(t) _ cp(O) dt + 2f3 -B log cp(O) dt.

The integral

1 fB2f3 -B log I cp(t)!4>(O)Idt

is clearly bounded above. Also, since 0 < f3 :s;; 77/4 and 0 < f3 :s;; 77/2,
I 0 - t I < 77 for -f3 :s;; t :s;; f3, and by (2) and (3), we have

I cp(O) - cp(O) I C2 \ (j I
cp(t) - cp(O) :s;; c; t - 0 .

Hence, we obtain

I cp(O) I I fB I cp(O) I
log I - cp(O) - ¥ -B log 1 - cp(t) dt

C I fB:s;; R1 + log c: + 2f3 -B log I O/(t - O)! dt.

By a proof similar to that of Lemma 4.1 in [2], we can show that

1 fB2f3 -B log 1o/(t - 0)1 dt :s;; 1.

For all 0 < f3 :s;; 77/4 and 0 < () :s;; 77. The proof of the lemma is completed
by letting R = R1 + log(C2/C1) + 1.

With the above lemmas, we can prove the main theorem. Let L1 j =
(tj+1 - t j )/2, j = 1,... , n. By Lemma 1, we obtain, using the principal values
of the logarithms,

n ( Z) n (271 ( Z)
log qn(z) = j~ ()(j log 1 - cp(Oj) - 277 J

o
log 1 - cp(t) dt

= - t --.!!.- JAI
log 11 - z!4>(Oj + t) - z!4>(OJ) I dt. (6)

j=l 277 -AJ 1 - z!4>(Oj) \
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By the maximum principle, we can assume that z = <p(B), and without loss
of generality, we restrict ourselves to the case where In - 21T ~ (J ~ 11 •
Now, let

81 = {j: j ~ 2 and 0 ~ (); - () ~ 1T}

and

82 = {j: j ~ n - 1 and 1T ~ Bj - () ~ 21T}.

Then for j E 81> (2) of Lemma 3 implies that

j-l

I ep«()j) - ep«() I ~ C1 I ()j - () I ~ Cl(lj - 11) = C1 I (Ik+! - Ik)·
k=l

Note that

so that by the hypothesis, we get

max (lk+1 - lk) ~ 21TAln
l<k~n

and

min (lk+1 - lk) ~ 21TjnA.
l~k<n

Hence, for j E 81 , we have

Similarly, we can prove that for j E 82 ,

n-l

= C1 I (lk+1 - Ik)
k=Hl

On the other hand, for -Ll; ~ I ~ Ll;, (3) oflemma 3 implies that

I ep«()j + I) - ep(B;) I ~ 21TC2Aj2n. (7)

Let p be the positive integer p = [C2dlA2/Cld2) + 2, where dl denotes the
diameter of D and d2 denotes the distance from 0 to C. Combining the above
estimates, we see that for p ~j ~ n - p,



POLYNOMIAL APPROXIMATION AND DISTRIBUTION OF ELECTRONS 361

But I C/>«())feP«(); + 01 ~ d1/d2 • Hence, for -Ll; ~ t ~ Ll;,p ~j ~ n - p, we
obtain, by using (7),

I c/>«()) - c/>«()) I~ d1 11 _ c/>«(); + t) I
c/>«(); + t) c/>«();) "'" d2 c/>«();)

~ n I c/>«();) - c/>«())\ 11 _ c/>«(); + t) I
"'" 21TC2A c/>«();)

1 I c/>(()) I
~ 2 1 - c/>«();) •

We now split the sum in (6) into two parts:

log qiei8) = E' + Eft,

(8)

where E' denotes the sum over 1 ~j ~p - 1 and n - p + 1 ~j ~ nand
Eft is the sum over p ~ j ~ n - p. Assuming that n is so large that Ll; ~ 1T/4
for all j, we can use Lemma 4 to get

Re E' = ; E' Ll; 110g 11 - C/>«())feP«();) \ - 2~; f~i log 11 - c/>(~(~ t) Idtl

To study Eft, we set

c/>«())!c/>«(); + t) - c/>«())!c/>«();)
X = 1 - c/>«())!c/>«();) ,

so that by (8) for p ~j ~ n - p and -Ll; ~ t ~ Ll;, I X I ~ 1/2. For the
same range of t and j,

-log(1 - X) = X + {(X2/2) + (X3/3) + ...} = X + (X2/2){1 + (2X/3) + ...},
so that

-log \ 1 - X I ~ Re X + t I X \2/(1 - I X I) ~ Re X + I X \2.

Hence, we have
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say, where

CHUI

QI = ~ 1:PJLl; Re 11J«()feP«()j + t) - 1J«()feP«()j)1 dt
271" j=p -Ll; 1 1 - 1J«()feP«()j) I

= ~ nf JLl; Re 11J«()j) - 1J«()j + t) . 1J«() I dt
271" j=p -Ll; 1J«()j) - 1J«() 1J«()j) I

+ n nf JA; R I 1J(Bj) - 1J(Bj + t) (1J(B) 1J(B»)1 d
271" j=p -A; e 1 1J(Bj) - 1J«() 1J(Bj + t) - 1J(Sj) I t

where

The first sum is clearly zero since t is an odd function. By (4) of Lemma 3,
we obtain

Let SI' = {j: P ~ j ~ n - p and 0 ~ ()j - B~ 7I"} and

Then we have

Q ' ,,::::!!- CadI _1_ ~~ ( A7I" )2+0< IL _1_ + L 1 1
1 ---:: 71" d2 2 + ex CI 271" n jEiS • j - I jEiS • n - j - 11'

I 2
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The right side tends to zero as fast as log n/n~. Also, by similar reasonings,
we have

Hence, again by similar reasonings as above, the upper bound of Q; is of
order O(log n/n). Therefore, the upper bounds for Ql = Ql' + Q~ can be
made as small as we please by taking n sufficiently large. Also, by applying
Lemma 3 again, we have

~ ~ ( d1C2An )2 ( A7T )31 L . 1 2+ L 1 I
27T d2C127T n jeSt' (j - 1) jeSs' (n - j - 1)2 \

< (A5j2)(7Td1C2j6d2C1)2.

Thus, we may take

log B = 2RA«d1C2/d2C1) A2 + 2) + A5/2(7Td1C2/6d2C1)2 + 1

to complete the proof of the theorem.

Remark. Professor Kovari pointed out to the author that he and
Pommerenke proved independently that if D is convex and Zn,k , k = 1,... , n,
are Fejer points on C, then

n

max IT 11 - Z/Zn.k I ~ 4.
zeC k~l
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